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1. INTRODUCTION

Boundary-laye r t ransi t ion is a problem of significant eng ineer ing im-

portance , which at the present time is not well understood. For design

purposes the eng ineer usually must use emp irical correlat ions of expe ri-

mental  data to character ize transit ion . One mechanism which leads to

transi t ion is the amplification of small disturbances. When the dis turbances

are infinite simally small , their behavior is adequate ly described by l inear

stability theory, although , as Gaster ’ has shown , there are some ambiguities

in app lying solutions of the Orr-Sommerfeld  equations , which assume paral-

lel flow to nonparallel boundary-layer flows . Nonlinear stability theory

extends the linear theory by inc luding the nonlinear te rms , but still requi re s

the disturbances to be small . (See Stewartson2 for  a recent review of this

subject . )  All nonlinear stability analyses known to this author make use of

the paralle l flow assumption and are valid only in the vicinity of the cr i t ical

Reynolds numbe r .

Two earl ier  numerical studies s imilar  to the present  work are those of
3 4 5DeSanto and Keller and of Fasel ‘ . Each of these is a stud y of boundary-

laye r stability carr ied out by integrating the comp lete two-dimens ional,

‘Gaster , M ., °On the Effects of Boundary-Layer  Growth on the Flow-
Stability, II J. Fluid Mech ., Vol . 66 , 1974 , pp. 46 5-480 .

2Stewartson , K ., “Some Aspects  of Nonlinear Stability Theory,  “ Polish
Academy of Sciences, Vol . 7, 1975 , pp. 101-128.

3DeSanto , D . F. and H. B. Ke lle r , “Numerical Studies of Transi t ion f rom
Laminar to Turbulent Flow ove r a Flat Plate , ~ J. Soc. Indust. App i. Math .,
Vol . 10 , 1962 , pp. 569-595 .

4 Fasel , H., “Numerical Solution of the Unstead y Navier -Stokes  Equations for
the Investigation of Laminar Boundary Layer  Stability, ~l Proceedings of the
Fourth Internationa l Conference on Numerical  Methods in Fluid Dynamics,
Spr inger -Ve r lag, Berlin , 1974 , pp. 15 1-160.

5Fasel , H., “Invest i gation of the Stability of Boundary Layer s  by a Finite-
Difference  Model of the Navier-Stokes  Equations , ” J. Fluid Mech ., Vol . 78 ,
1976 , pp. 355-383 .
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uns tead y Navier-Stokes  equations . DeSant o and Ke l l e r  input both small  and

l a r g e  amp litude d i s tu rbances  into the boundary laye r and looked at the

res ultant flow downstream of the d i s turbance  source . Fase l has to da t e

concent ra ted  on small dis turbances  and thereby inve stigated the ef fec ts  of

th e nonpara lle l boundary layer on linear stability. (Fasel  has indicated in a

pr ivate  communication that he has also car r ied  out large amp litude calcula-

t ions which are  qualitative ly simila r to the resul ts  presented herein . ) Solu-

t ions  to the th ree -d imens iona l, uns tead y Navier-Stokes  equations have been
c a r r ied out by Orszag  and he find s a behavio r s imilar  to t r ans i t ion .

The present  work is the in i t ia l  ph ase of a st ud y whose purpose is to
deve lop a computer code for solving the Nav ie r -S tokes  equations (or an
appropr ia te  simplif ied v e r s i o n)  in the Reynolds  number range of t r ans i t ion
and to stud y the various stages of boundary - laye r t ransi t ion. The nonlinear
stabil i ty of the Blasius boundary laye r is investigated by simulating the

phys ica l  situation which occurs when a vibrating ribbon introduces distur-

bances in a boundary laye r . The solutions have been obtained by solving
both the two-dimensional  Navier-Stokes  equations and the simpler pa rabolized

vort ic i ty equat ions . The detailed formulation of these equations is g iven in
Section 2; the spe ctra l  method used to solve these equations numerica l ly is

d e s c r ibed in Secti on 3 .

2 . MATHEMATICA L FORMULATION

Cons ide r  the flow of an incompress ib le  fluid over a semi- inf ini te  flat
p late. If the flow is assumed to be two-d imensional, then the unstead y
N a v i e r - S t o k e s  equations may be wri t ten in t e r m s  of the vor t ic i ty  c&.~ and the
s t ream function ~

‘:

6 fl . . IO r s z a g ,  S.A ., Turbulence and Trans i t i on:  A Progress Repor t , ’ Pro-
ceeding s of the Fift h Internat ional  Confe rence on Numer ica l  Methods in
Fluid Dynamics,  Sp r i n g e r - V e r l a g ,  Berl in , 1976 , pp. 3 2 - 5 1 . 

~~~~~~~~ ~~~~



Ct) + 9 ~~Ct) - 4 ~~J = v (~~ +~~ 
) (1)

t y x  x y  xx yy

w = ~ 1l +~ l ( 2)
xx yy

The independent variable s are x , the coordinate paral le l to the plate; y, the

coordinate normal to the p late; and time t. Equations (1) and (2) will be =

solved in dimensionless parabolic coordinates , de fi ned by the comp lex trans-

formation

~~ + = + 
~17 (ZR [

1/2] (3)

where x 1 is a typical distance from the leading edge , and R is the Reynold s

• number based on the f r ee s t r erm  velocity and x 1. Th e dimen1sionless time T

i s g iven by

i- = tU /x (4)
~~ 1

The dimensionless dependent variables are defined by

(2vU x 1 ) ”2 ~~f = (2 vU x 1) h I Z g (5~

cu = U [ U / (2 vx 1 ) ] 1 ”2 Q/ ~ (6i

In terms of these variables , the Navier-Stoke s equations are  as fol lows:

z~ Q~~{172/ (2~~
2 R~~~

) 
+ 1 Q

1717
/~ + g~ Q / ~ - g (Q/~~~ + 

[Q/(Z~~R ) }

(7)

~Qf~ 2 /(z~~
2 R \ + 11 g + g /(Z R \ (8)[ / \  x

l/ J 1717

L
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The term on the lef t -hand side of Eqs . (7) and (8) containing R ’ is neg li g ible

2 2 2 1 
~compared to unit y for 17 << 2~ R . Since ~ = 0(1 )  and R~ 0( 10 ) ,  thex l 1

subject term is important only for very  large values of 17. At large values
of 17, the vorticit y is exponent ial ly small. The refore , the t e rm in b racke t s
on the le ft-hand side of Eqs . (7) and (8) may be set to unity with neg lig ible
effect  on the solution. (A comparison of nume rical solutions with the sub-
ject terms retained and dropped has confirmed that this t e rm is unimpor tant .

Equations (7) and (8) are  fourth order  in both ~ and 17, and conse quent l y
require two boundary conditions on each boundary of the solution domain .
Most of the boundary conditions are obvious from physica l co n sider at ions ,
but the downstream boundary conditions are difficult  and , as will be seen .
may comp licate the numerics . One way to alleviate this proble m is to 11 para .
bolize ” Eq. (7) in the ~ direct ion . The most accurate way to do this is to
substitute Eq. (8) into E q. (7) and dr op the terms of O(R 2 ) . Th is resu l t s  i n
a th i rd-order  system in ~~~, and Eq. (7) becomes 1

= Q

1717
/~~ + g~Q

17/~ - g (Q/~~~ + 
f g 17q/(

2~~2
R ) ]

As stated previously, Eqs . (7) and (8) are  the Navier -Stoke s equations;
E qs. (8) and (9) will be re fe r red  to herein  as the parabolized vorticity equa-

tions . [Some authors neg lect the entire last t e rm in Eq. (7) and term the
resulting set the parabolized vorticity equat ions .]

For infinite Reynolds number and stead y flow , the two equation sets
may be reduced to the Blasius equation:

f +ff 0 (10)17 17 17 17 17

In many cases , the solutions of interest  are smal l  r e la t ive  to the B las ius
solution . Thus , to improve numerical  accuracy,  the inhom~ g eneo u s,
nonl inear , per turbat ion equations obtained by subtrac t ing  out the B l a s iu s

-8- 
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solution are actually the one s solved . Howeve r , th e equa t ions are p re sented

in the usual homogeneous manne r to keep th e algebra simple and not obscure

the phy sics .

The equation sets will be solved in the semi -infinite reg ion:

1�~~~� (R /R 
‘~‘I~ ( 11)

\ X~~ / x l!

0 � 7 7 � c x  (1 2)

The boundary conditions at the wall (~7 = 0) are such that the two velocit y

component s are zero:

g g
17 

= 0 ( 13)

The station 17 = w is upstream of the bod y in Cartesian coordinates , and the

stream function and all its derivative s are known (except for exponential ly
small t e rms).  The condition on the stream function is

g/ ~ f = 7 7 _ $  (14)

wheref l  is a constant characterist ic  of the disp lacem ent th i ckness . An

additional exp licit condition on g17 or Q is not required , as the condit ion is

imposed by the form of the numer ica l  scheme which is d i scussed  in Section 3 .

Upstream , at ~ = 1, the two velocit y components are specified . For

the results described subsequently, the upstream boundary condition con-

• sists of a linear combination of the Blasius solution and a time periodic solu-

t ion of the temporal  Orr -Sommerfe ld equation

g = 
~B 1asius + A Re [~~ (i~) exp( - iw r) ]

( 1 5)
g~ = 

~B1asius - 2Aa Im [~~ (ij ) exp(
~~

iCJr 7iI

-9-
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I

where ~ is the Or r -Sommerfe ld  solution for a real  wave number ci, and (~) is

the frequency . The imag ina ry part of ~ which causes ~ to grow or decay in

time is ignored and rep laced with so me fixed amp litude A .

The Navier -Stoke s equations require two downstream boundary  con-

di t ions; the parabol ized vor t ic i t y equat ions re quire  onl y one. Roache 7
. in

his d iscuss ion of outflow boundary  conditions used in va r ious  finite d i f f e r e n c e

scheme s , suggests that conditions on the hi gher  der ivat ive s are  less restr ic-
t ive.  The conditions imposed on the Navie r-S tokes  equations set the f i r s t

and third  normal derivat ives of g equa l to zero by imposing

(~~
Q)

~~ g~ 0 (16)

Th e condit ion imposed on the parabolized vo rti cit y equations sets the thi rd

derivative to zero:

= 0 (17)

The ideal downstream boundary conditions have no ups t r eam inf luence :
in st ead y flow there is no boundary reg ion g ene rated at th is bounda ry , and in

un stead y flow there is no upst ream re f lect ion of the wavel ike d i s turbances .
Unfortunately, the conditions (16) and (17)  are not ideal . Howeve r , be cause

the calculations are carr ied  out at a very  hi gh Reyno ld s number , the down-

s t ream viscous boundary reg ion that occurs when the Nav ie r -S tokes  e quations

are  solved is a very small  part  of the total computat ion domain , having a

th ickness  Reynolds  number on the o rde r  of 10 . By the same token , the

re flected wave like d is turbances  which occur  for both sys t ems  of equat ions

have a limited but la rger  ups t ream inf luence.  For the condit ions used he rein ,
it was found that the ref lected wave decayed to a neg lig ible amp litude in

7Roache , P . J. , Computational  Fluid Dynamic s, Hermosa  Publ ishers ,
Albuquerque , New Mexico , 1972 , pp. 154~T~ l .

-10-
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~1

about a wavelength . (The length Reynolds  numbe r of the Or r- Sommer fe ld

waves  used in this stud y is about 2 x l0~~. )  The main prob lem with the
dow nst ream boundary condition effects  is not that they invalidate part of the

~,o1ution , but that the result ing regions must be resolve d or the calculat ion

~~il1 be unstable . Thus the boundary region can set the resolution required ,
and ind i rectly the time step, and can thereby substantiall y in crease corn-

puter s torage  and running time . The main reason for  using the parabolized

vo rt ic i ty  equations is that the very thin downstream viscous region is absent ,
and thus the resolution and time step requirements  a re  not as severe .

Both equation sets are parabolic in time , and the condition imposed
at T = O i s

g = = “B lasi u s 
(18)

The Blasius solution has been used as an ini t ial  condit ion because the present
stud y is concerned with perturbat ions about this solution . Othe r initial con-
d iti ons have been used , but none of these solutions is repo rted he re .  The
Blasius solution , of course, is not an exact solution to ei ther Eqs . ( 7) and (8)
or Eqs . ( 8) and (9) .  A solution of eithe r the Nav ie r -S tokes  equations or the
parabolized vor t ic i ty  equations with Eq . ( 13)  as the in i t i a l  condi t ion  and no
per turba t ions  [A = 0 in Eq. ( 15) ]  will produ ce a c o r r e c t i o n  to the Blasius
solution of o rde r  R 1, consiste nt with the asymptot ic  expansion g iven by
Go ldste in  . These correc t ions  to the Blasius solut ions  ha ve been generated

• n umer ic ally be cause this is a convenient  problem for tes t ing  numer ica l
• a l g o r i th ms . When unstead y pe r turbat ions  are in t roduced , they are  much

la rger  than 0(R ~~~), and thus the resul tant  solut ions are  unaffected by the
hi gher  o r d e r  ste~ dy pa rt of the solution .

8Gold stein , S., Lectures on Fluid Mechan ics,  l n t e rsc ien ce , London , I i t O ,
pp. 136- 144 .

— I l —
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3 . N U M E R I C A L  METHOD

The Navie r -S tokes  equations and the parabo lized  ~‘or t ic i t y equat ions

give n in Section 2 have been solved with a ‘ s p e c t r a l  m e t h o d  (Orszag  and

Israel i 9):  the dependent variable s are expanded in a f in i te  set of o r thogonal

f un ct ion s in both space dimens ions . This resul t s in a coup led set of o r d i n a r y

dif ferent ia l  equations , with the coeff ic ients  of the or thogonal  funct ions as the

de pendent variables . These equations fo r  the coef f ic ien ts  have been numeri-

cally integrated in time with various finite d i f f e r e n c e  method s .

The orthogonal  funct ions are not chosen a r b i t r a r i l y, but rat he r  mus t

satis fy cer ta in  requirements . The following c r i t e r i a  have  been used for

sele cting the orthogonal  functions used in this  w o r k :  ( 1 )  the funct ion  set

should span th e same space as th e co r r esponding  independent  va r i ab les ;

(2) since der ivat ive s are being evaluated , the function set should be such that

der ivat ive s of the functions can easi ly be exp resse d  with the same function

set; (3) because the equations are  nonl inear , it should be possible to map

rapidly the coefficients  of the o rthogonal functions into a d i sc re t e  set of

physical  points , and vice versa ;  (4) f inal l y, the or thogonal  func t ions  should

conve rge rap idly. For the present  problem , a fo rm of Cheh yshev  pol y-

nomial is used in both dimensions . For exam ple ,

= ~ ~~~~a ..(r) T (
~ ‘ ) T~ (~- 77

~~
7
r) (19)

i= 0 j = 0  2 1

where T is the Chebyshe v pol ynomial  def ined on the in te rva l ze ro to one ,

and 
~ 

is a scale factor . (The proper t ies  of Cheb y sh ev pol ynomia l s  are

9O rsza g , S. A ., and M , Israe li , “ N u m e r i c al  S imula t ion  of V i sc o us  Incom-
p ress ib le Flows , ” Annua l Rev ,  of Fluid Mech ., Vol . 6, 1 174 . pp. 2 8 1 - 3 1 8 .

.4
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10 11give n in various books ; see , for exam ple , Fox and P a r k e r  or Lanczos

The functions used in E q. ( 19)  are defined on the prope r space , and there-

fore meet the f i r s t  requirement . Th e d er ivat ive s of pol ynomials  or  exponen-

tial polynomials are polynomials  of the same type , an’! thus  the second
requirement is satisfied.  An expansion in Chebyshev  pol y n o m i a l s , suc h as
Eq. (19), is a Fourier cosine expansion on a d i s to r t ed  ph y s i c a l  space. Thus

the mapping back and forth between physical  space and Four i e r  space m a y

be carried out using the “fast  Fourier t r a n s f o r m. (A n e f f i c i en t  method for

perfo rming cosine t r ans fo rms  with a standard fast  Fourie r t r a n s f o r m  rout ine

is given in Cooley, et al . 
12

) Orsza g 13 has shown that pol ynomia ls su ch as

those of Legendre and Chebys hev converge much more rap idl y for  boundary

value problems than periodic functions such as sine and cosine because of

the Gibbs ’ phenomena at the boundary associated with the latter c lass  of
functions.

All  dependent variable s and their der ivat ive s ma y be ex pa nded in a

series of the form (19) except the stream function , which is unbounded at
infinity; in this case , the expansion of g - 77k , wh ich is f ini te eve r ywhe re , is
used , This representat ion of g togethe r with Eqs . (8) and (14) is suff ic ient
to ensure the desired exponential decay of vort ici t y at infinit y.

10 . .Fox , L, and I . B. Parker , Chebyshev Polynomials in Numer ica l  Ana l y s i s ,
Oxford Univers i ty  Press , London , 1968.

11 Lanczos C., Table s of Chebyshev Polynomials, U. S. Department  of
Commerce , Nationa l Bureau of Standards , A pp lied Mathematics Series  q ,
Washington , D . C., 1952 , pp. v-xxvii .

‘2 Cooley, J. W ., P.A . W. Lewi s , and P . D. Welch , “The Fast Fourie r
Trans fo rm Algorithm: Programming Considerat ions in the Calculat ion of
Sine , Cosine and Laplace Trans forms , J. Sound Vib ., Vol . 12 , 1970 ,
pp. 3 1 5 — 3 3 7 .

13Orszag,  S. A ., “ Numerica l  Simulation of Incompress ib le  Flows Within
Simp le B oundaries .  I . Ga le rk in  (Spec t ra l )  Rep re sen t a t i ons , “ Studie s in
A pp lied Math, Vol . L, 1976 , pp. 2 9 3 - 3 2 7 .

- 13- 
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The so lut ions have been upda ted in t ime with both exp licit and imp l ic i t

f ini te d i f fe rence  methods . The exp licit Euler  method

a.. (T+~~ ’r) - a . . ( ~~ ) = ~ TR. . (T)  (20)
13 13 13

has bee n use d as wel l as the followin g , f ully imp li cit meth od

a..(T+ i~r) - a . . f t)  = 0 . 5L~T[ R . . (r +~~r)  + R . . (r)] (21)

where  a . . are the coefficient s o f . Q  as given in E q. (19) ,  and H. . denotes the
Four ie r  t r a n s f o r m  (or coeff icients)  of the rig ht side of e i ther  Eq. ( 7) or
E q. ( 9) divided by 2~~. The eva luation of the l inear  t e rms  in R~ . f rom the
known expansions of g and Q involves some simp le matr ix  mult ipli cat ions ,
the details of which may be obt ained f ro m Fox and P a r k e r

10 , The nonl inear
terms are obtained by Four i e r - inve r t i ng  the four quantit ies appear ing in the
two nonlinear te rms , car rying out the indicated multi p lica t ions at each
discre te  point in phy sica l space , and! F o u r i e r - t r a n s f o r m i n g  the sum of the
nonl inear  t e rms . This is an efficient  way of eva luat ing the non l inea r  t e r m s ,
but it does introduce some al ias ing e r r o r  into the resul t . Ors zag and
I s rael i 9 call this a “ pseudospec t ra l  app rox ima t ion ” (as op posed to a sp e ct r ~~1
approximation , in which there  is no al ias ing  e r r o r) .  They sugges t  that the
ex tra  computation time requi red to remove the a l i a s ing  e r r o r  does not im-
prove the accuracy enoug h to jus t i f y the added computat ion t i m e ;  test calcii-
lations pe r formed in the pre l imina ry stages of the present  work  support this
conclusion .

Since Eq. (21) is nonlinear , it must be solved by iteration on the

quantity R..fr + 4r) . As a first guess , for a. . (r + L~T)  the Eule r difference

equation (20) is used . Subsequent corrections to a
1~
(r + ~r) are obtained

from

a~~
’1(~ + ~~r) - a f t )  = 0 , 5L1 T[ R~~(r + ~~r) + R . . ( r ) I  (2 2 )

-14-
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where the superscript denotes the 0
th level of iteration . When a

I’i
~~ agrees

with a~. to within some specified tolerance , the i terat ion has converged .
13

Thus, the difference method is in effect a predictor-corrector method , with

the numbe r of cor rec to r  steps determine d by the convergence  test . A lthoug h

the i terat ion on the imp licit d i f fe rence  scheme wil l  converge and is stable for

re lative ly large t ime steps , the time step which min imizes  computer running

time is small enoug h so that convergence is obtained in one to two itera-

tions . For the Navier -Stoke s equations , this optimum imp licit time step

is a factor of four or five grea te r  than the maximum stable exp licit t ime

step; for the parabolized vorticity equations , the optimum imp licit step is

approximately equal to the maximum explicit step. The result is that the

implicit method is about twice as fast as the explicit method for the Navier-

Stokes equations, and about half as fast for the parabolized vorticity equa-

tions . To minimize computer time, the imp licit method has been used to

solve the Navier-Stokes equations, and the explicit method to solve the para-

bolized vorticity equations.

Equation (20) or (22), togethe r with the vorticity bou ndary condi t ions ,
completely determines the vorticity (or equivalently its expansion) at the

new time or iterate level. However, ~s is often the case with the vorticitv-

stream function formulations , ‘ome of the vorticity boundary conditions are

not known explicitly. In the present case , the two velocity component s are

specified on the wall and the upstream boundary, resulting in conditions on g

and its derivative normal to the boundary.

Two different methods for determining the vorticity boundary cond i-

tions have been used. The method which is easiest to imp lement and which

requires the least compute r time is an approximate scheme. With this

method , the additional boundary conditions are substituted in the Fourier-
t r a n s f o r m e d  vers ion  of Eq. (8) for the equations govern ing  the hi ghest  fre-
quency t e r m s  in that dimension . This Po i s son- l ike  equation , con ta in ing  both
the Dir ich ie t  and Neumann condi t ions , g ive s the new value of the F o u r i e r
expans ion  of g, and the expansion of Q that sa t i s f i e s  the bounda ry  cond i t i ons

- 15-
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follows from Eq. (8) . The more convent ional , se cond method has g r ea t e r

accuracy,  but a lso requires  more computation lime . Havin g solved the f ini te

d i f fe rence  equation , one s imp ly guesses  the boundary  condit ions on Q and

solve s the Poisson equation for g with Dir ich le t  condit ions . In gene ra l , the g

so obtained will  not satisf y the des i red  Neumann condit ions . Th e e r r o r  in

the norma l der iva t ive  of g is then used to cor rec t  the boundary  va lue of Q ,

and the Poisson equation is solved again . If the cor rec ted  Q is not exact , it

may be necessary  to iterate this process .

The advantag e of the f i r s t  method of t r e a t i n g  the boundary  condi t ions  is

that all boundary  conditions may be imposed s imp ly and t h e  Poisson equation

need be solved only once per i tera t ion . The d i s a d v a n t a g e s  of the approach

are  that numer ica l  ins tab i l i t i es  may occur  and a l so  that  t he  boundary  condi-

t i o n  info rmat ion is somewhat a r t i f i c i a l l y concen t ra t ed  in the hi g h f r equency

pa rt of the expansion spectrum. By expe r imen t ing  with  v a r i o u s  m a t r i x

operators , it was found that the nume r ica l  i n s ta b i l i t y  p rob lem could be cured

by zeroing a column in the second d e r i v a t i v e  ope ra tor  (Fou r i e r  space opera-

t o r )  fo r each ex t ra  boundary condit ion in that  d i m e n s i o n . The c o n c e n t r a t i o n

of boundary  condi t ion in format ion  at hi g h f req uen cies is con t ro l led i f t he

d i f f u s i o n  is large  enoug h . In the 17 d i r ec t ion  the  d i f f u s i o n  is v e r y  la rg e , as  is

obvious  f r o m  the bounda ry - l aye r na tu re  of the f I o v ~, and t h i s  method of im-

posing bou ndary  condi t ions  can be used . The s i tua t ion  in the ~ d i r ec t i o n is

m uch d i f f e r e n t ; d i f fus ion  in this  d i rec t ion  is onl y impor tan t  on le ngth scale
ch a r a c t e r i z e d  by a Reyno lds  number  of o r d e r  10 . U s i n g  t h e Ch ebyshe v
expans ion (which acts ve ry  much l ike a hig hl y v a r i a b l e - m e sh f i n i t e - d i f f e r e n c e
sc heme) , it is possible  to resolve  lengths  of t h i s  o r d e r  n e a r  the two hound-
a r i e s , w he re bound a ry reg ions ma y occur , bu t not in  the  c e n t e r  of the com-
put at io n al  doma in . Thus , in t he ~ d i r e c t i o n  it was n e c e s s a ry  to use the
seco nd method of impos ing  the b o u n d a r y  c o n d i t i o n s . The m e t h o d  u sVd!  f o r

ob t a i n i n g  the  c o r r e c t  va lue of the boundary  vo r t i c i ty  is des c r ibed  in th e
fo l lowing  p a r a g r ap h .
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I s r ae li 14 ’ 15 has conside red the p roblem of f i nd ing th e vor t ici ty bo und-

ary condition at a solid wall when solving the vo r t i c i t y - s t r eam funct ion

equations with a finite d i f fe rence  scheme . He proposed a rap idl y conve rgen t

i terat ive  scheme for finding the vorticity. This i terat ive scheme and its

conve rgence propert ie s are  based on the fact that the value of the vort ici t y
at a point on the boundary is pr imar i ly a function of the normal  velocity at

that point and a weak function of the norma l ve locity e lsewhere  on the bound-

ar y. Stated anothe r way, the matrix relation between the vor t ic i ty  at the
gr id  points on the boundary and the cor responding  normal  veloci t ies  is diag-

onall y domina nt . Even though the boundary condition of i n t e r e s t  here  is at

an inflow boundary rather  than a wall and the operat ions  are  ca r r i ed  out in

Fou r ier spa ce , the situation is much the same. The relat ion between the
Fourier  coeff ic ients  of P and g~ at the ups t ream boundary is d iagonal ly
dominant , and a simila r i teration will converge  rap idl y. In the present
problem there are  usually 17 modes in the 17 d i rect ion [n = 16 in Eq. (1 9 ) } ;
the re fore , instead of i terat ing , the whole matr ix  is s tored (the matr ix  is
actually only 15 x 15 becaus e of the reduction associated with the boundary
condi t ions) , and the Poisson equation need onl y be so lved twice per step.

A brief  outline of the technique used to solve the Poisson equa t ion  w i l l
comp lete the descr i ption of the numer ica l  method used to update the solut ion
in t ime . The invers ion of the 77 operato r in Eq. (8) is accomp lished u s i ng

the tensor  product method of Lynch , et a~. . This requi res  comput ing  and
storing the eigenvalue s , the eigenvec tor s , and the i n v e r s e  of the e igenvec to r

14Israe li , M., “A Fast Imp licit Nume rical  Method for  Time Dependent
Viscous Flows , “ Studies in A pp lied Math, Vol . LIX , 1970 , pp. 32 7 -34~l ,

15 . ft . .I s rae li , M ., On the Evaluation of I terat ion Pa ramete r s  for  the B o u n d a ry
Vort ici ty,  “ Studies in A pp lied Math, Vol . LI , 1972 , pp. 67-71 .

16 Lynch , R .E ., J. R . Rice , and D . H , Thomas , “Direc t  Solution of Pa r t i a l
D i f fe rence  Equations by Tensor  Product Methods , “ Numer i sehe  M a t h e r i t t l i k ,
Vol . 6 , 1974 , pp. 185-199. 
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a rray  associated with the discre te , Four i e r - space, se cond d e r i v a t i v e  opera-

tor  i n 17. Since only 17 t o 21 modes a re  used in th is d imens ion, th e s t o r a ge

requirements  are very  mode st. In the ~ di me n sion , it is of i n t e r e s t  to run

rather  large problems; for  the resu l t s  descr ibed he re in , a maximum of 129

modes was used . The inverse  in this dimension is ca r r i ed  out by observ ing

that the second integral  operator in the ~ d i m e n s i o n  i s z e r o , with the excep-

tion of the main diagonal and the second diagonal  above and be low the main

diagonal (Fox and Pa rke r 10 ) . Thus , wi th some man i pulation of Eq. (8) ,  the

~ inversion may be car r ied  out by us ing an adaptation of the t r i d i agonal
7algorithm described in various numerical ana lysis texts , e.g., Roache

Therefore , the comp lete invers ion  of the Poisson equation in the l a rges t  case

involve s two matrix multiplications of a r r a y s  sized 17 x 17 and 17 x 129 , and!

17 solutions of t r idiagonal  problems involving 129 unknowns .

4 . NUMERICA L RESULT S

The response of the flat p late boun dary  layer to a pe riodic d i s tu rbance
of vary ing amp litud e imposed at H l0~ is desc r ibed in th is sect ion . The
dis turbanc e is a solution to the temporal  Orr-Somrn er fe ld equation at H

5 x
10 , such that the real part of the comp lex f r equency  is

w = W x /U 13 . 16 (2~~)
r r 1 w

Most  of the computations are car r ied  out in the Reynold s numbe r range
10 < R �  2. 5 x 10~~. The initial condition is the Blasius solut ion , and at
t i m e  zero  the O r r - S o m m e r f eld d is turbance is turned on at the ups t ream
boundary  with a f requency w and an amp litude A . This resul ts  in a Tollrn ien-
Schl icht ing wave being propagated downst ream , The calculat ion is run un t i l
the  so lu t ion  is t ime periodic at all point s in the domain . Exper ience  has
shown that the solution at a given stat ion is periodic about one period afte r
the d i s turbance  f i r s t  a r r i v e s  at that station .

-18- 
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Fasel
4 has published calculat ions s i m i l a r  to the ones descr ibed  h e r e i n

in which sma l l  amp litude d i s tu rbances  a re  introduced into the boundary la y er .

It is of in te res t  to compare the neu tra l  stability R eyn old s numbe r and the

amp litude behavior as a function of Reynold s numbe r computed by Fasel’ s

Navier-Stokes code with the present parabolized vorticity result s . At a

constant  value of y corre sponding to 17 = 58. 2i/~~~ in th e p resent coord inat e

system, Fasel found that the neutral  stability R eyno lds number is 1. 3 6 x l0~~.

This is in good agreement with the minimum of the curve  shown in Fig ure  1 .

At small amp litude s , the disturbance is l inear  and may be adequat el y cha rac-

terized by a dimensionless amplitude ratio as is done by Fasel4 . To make

the comparison in Figure 1, Fasel’ s dimensionless  amp li tudes have been

scaled such that the “neutral stability point ” falls identically on the curve

shown. The othe r points are in good agreement  with the curve.

To gain confidence in the validity of the numerical  computations when

large amp litude disturbances are input into the boundary laye r , va r ious

se l f -consis tency checks have been made . Figure 2 shows ooe such compari-

son in which a Navier-Stoke s solution is compared with a parabol ized vorti-

city solution . The agreement in both phase and wave shape is see n t o be

ve ry good . Both of these calculat ions  we re done for a Reynolds  number

rang e 10~ � R � 2. 5 x 10~~, and 17 modes in the 17 d imens ion  (n 16) . Flow-

eve r, the time step, the ~ resolution , and the time diffe rence method were

different. Even though twice as many ~ modes were used in the case of the

Navier-Stoke s equations , exper ience  suggests  th i s  calculat ion would ulti-

mate ly be unstable . Because the e f fec t ive  ce l l  Reynolds  numbe r at the
downstream end of the computation is not 0 ( 1) ,  the v iscosi ty  dominated

waves reflected off this boundary are not properl y dissipated. Instead , these

waves propagate back upstream and destroy the whole calculation. The

solution region dep icted in Figure 2 is free f rom any in fluence of ref lected
waves,  If the Navier -Stokes  resolution is increased sufficiently, the re-
flected wave is confined to a finite region near the downst ream boundary ;

the parabolized vort ic i ty  equations a lso  admit  a re f l ec ted  wave , but , s ince
the viscous length scale is absent , the requirement for very high resolution

is e l iminated,

- 19-
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To fur ther  invest igate the validity of the solut ions , parabol ized vor-

t ic i ty calculat ions were made in which the resolu t ion  in each space dimen-

sio n was changed . The 77 resolution was studied by i n c r e a s i n g  n f rom 16

to 20 . The agreement  of the two parabolized vo r t i c i t y  calculations was bet ter

than the agreement  between the parabolized vo r t ic i ty  and the Navie r -S tokes

calculations shown in Figure 2. The resolution in the ~ dimension was

studied by repeating the nominal calculat ion made on the in t e rva l  l0~ �

R �  2 . 5 x l0~ by shortening the interval  to 10~ � R
~~

� 2 x l0~~. In both

cases , 6 5 modes we re used to represen t  the dependent variable s . A gain ,

the agreement was comparable to Figure 2 .

The numerical  results presented here in  consis t  of two calculations ,

both made with the parabolized vorticity code on the in terval  l0~ � H

2. 5 x 10~~, with 65 modes in and 17 modes in ~7. Th e ca lculat ions a re

ident ical  except for the amp litude of the O r r - S o m m e r f el d  solution used in the

upstream boundary condition . In the small amp li t ude case , the veloci t y

perturbat ions are everywhere  less than one-tenth of a percent .  The large
amp litude disturbance is 80 times the smal l  one , and non l inear  e f fec ts  are
c l e a r ly present . In most cases it will be convenient  to compare  the sma l l
and lar ge amp litude result s in o rder  to c l ea r l y i l lus t ra te  the nonl inear  e f f ec t s .

As  a point of r e fe rence , the Four ier  amp litude of the smal l  amp l i tude

input disturbance is shown as a function of 77 in Fi gu re  3 . The Blasius

solution is also g iven to show the relat ive var iat ion of the curve s . Fina l l y,
the Fourie r amp litude of the disturbance a f t e r  it has propagated downs t r eam
to B = 2 . 2 x 10 is shown , Figure 3 shows that the peak in 17 space is

shifted as the dis turbance is propagated downstream and amp l i f i ed . Subse-

quent curve s will  show the variation of the disturbance as a funct ion  of

at 77 = 0. 2 , which is we ll down in the shear layer , and 77 = 1. 0 , which is n e a r

the peak disturbance point.

Figure 4 shows a compar i son  of the large and smal l  a m p litude v e l o c i t y

per turbat ion at the 77 location inside the shear laye r , as a funct ion  of R .
While the small  amp litude d is turbance  c lose l y resem bles a modu lated
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sinusoid , the large amplitude pe rturbation is significantl y distorted . How-

eve r , as noted previously, the d i s turbance  at any stat ion is per iod ic  in t ime

with the period of the upstream dis turbance .  This fact suggests  that a Four ie r
ser ies  in time will allow a clea re r  in terpre ta t ion  of the physics than curve s
such as those in Figure 4 .

The Fourier  amp litude of the perturbat ion velocit y is i l lustrated in
Figure 5 at the same station in the boundary laye r as Figure 4 ; the Fourie r
amp litude at a station near the location of the maximum dis turbance is shown
in Figure  6 . The large amplitude curve s (A = 0 . 08) in Figures  5 and 6
show that up to B = 1. 3 x l 0~ the pr imary mode is changed only s lig h t l y
fri m the linea r behavior, while the second mode grows substantially. Thus

in this range , the nonlinear effects which feed ene rgy into the second mode
are destabilizing. Beyond the maximum amplitude point of the second mode ,
the relative stability become s a matter of definit ion .

The perturbation ve locity is herein defined relat ive to the Blas ius
and therefore  the mean perturbation is not zero in the large amplitude case.
The mean per turbat ion shown in Figures 5 and 6 is c lear ly less impor tan t
than the second harmonic.  The hi gher harmonics  a re  even smalle r than the
mean and are the refore  not shown .

Figures  5 and 6 suggest that the amp litude of the second ha rmon ic
relat ive to the f ir s t  harmonic  is a function of 77. Thus , th e v a r i a t i o n  of t h e
ha rmon ic  components  with 77 is i l lustrated at two va lue s of the Reynold s
number in Figures 7 and 8. At R = 1. 3 x 10~ the la rge and small  amp litude
p r imary  mode shapes are ve ry simila r . The shape of the secondary is
qualitative ly similar to that of the pr imary ,  but th e peak and phase r e v e r s a l
points are c loser  to the wall . The mean pe r turbat ion velocit y is posit ive
near  the wall  with a smalle r negative region adjacent . (Only absolute va lue s
are  shown in the f igure .)  Figure 8 shows a s imi lar  result at R 2 . 2 x l0~~.
At th is  Reynolds  numbe r , the p r imary  dis turbances  are  d i f f e ren t  for  the t w o
va lues of A . The mean contr ibut ion again  has a posi t ive reg ion near  the wall ,
fol lowed by a now signif icant  negative reg ion .

-25-
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It is also of interest to conside r the phase re la t ionsh i p between the

p r i m a r y and secondary  modes . The sine of the phase  ang le for bo th modes

is p lo tted versus  R in Figure  9. The phase ang le has been desi gna t ed

ax + 0 onl y to ca l l  atte ntion to its hi ghe r  o rde r  behavior . That is , if a (or 0)

for  e i ther  curve  is a constant , then 0 (or  ~~) is a wea k func t ion o f x~ The

n u m e r i c a l  res ults  show that  the secondary  is ver y n e a r l y a spat ia l  ha rmon ic

of the p r imary .  This agrees  with the usual  assumpt ion made in analytic

st udies of nonl inea r  th eor y , that  the second mode is a ha rmonic  of the pri-

m a r y in both space and t ime .  It is in te res t ing  to note , however , that (1)  the

seconda ry is n ot exact l y a s patial harmonic  of the p r i m a r y  mode , (2 )  the

ph ase r ela t ions h ip v a r i e s  wit h R~(~ and (3)  the phase  r e l a t i o n s h i p ap pears  t o

cor re la t e  with the g rowth-decay  be hav ior  of the second mode as dep ict ed in

Fi gu res 5 and 6 . If the two curve s were spat ial  h a r m o n i c s , then the nega t ive
peaks of the secondary would coincide  with the positive and negative peaks

of the p r i m a r y. Between 1.6 x l0~ and 1. 8 x l0~ , there is clearly a change

in the relative phase of the two modes;  th i s  chang e is wel l  co r re lated with

the min imum amp litude point  of the secondary.  A lthoug h this  point needs

further study, a tentative finding of th is  numer ica l  work  is that  changes in

the re la t ive  phase of the two modes are  co r r e l a t ed  with the energy  in terchange

and hence the g rowth /decay  behavior of the second mode. (Work  ca r r i ed  out

subsequent to the init ia l s u b m i s s i o n  of this  report 17 expands  upon and v e r i f i e s

this  con jec ture .

5 . CONCLUDING R E M A R K S

There are  fou r main  results  or conclusions of this work . Fi rs t , it is

possible to solve the two-dimensional, unstead y Nav ie r -S tokes  equations
(as well  as the simp ler parabolized vortici t y equat ions)  us ing an o r thogona l
function expansion ( spec t ra l  method) in both space d imens ions  with n o n t r i v i a l

boundary conditions.  The most d i f f icu l t  problems arose  with r ega rd  to t he

17 . . . .Murdock , 3 .  W, and T. D. Tay lor , N u m e r i c a l  Invest igat io n of N o n l i n e a r
Wave Interaction in a Two-Dimensional Boundary Layer , “ AGARD
Symposium on Laminar  Turbulent  Trans itio n , Copenhagen . Denma r k ,
2-4 May 1977 . 
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boundary cond itions . The first problem is what mathemat ica l  boundary

co ndi t ions sho ul d be used (pa rt icu la r ly on the downstream side) ;  second ,

g ive n the boundary conditions , how should these conditions be imp lemented

to be consistent  with t runcated series expansion for the dependent va r i able s?

The results  described herein demonst ra te  that these equations can be

answered  in such a way as to produce usefu l numer ica l  solut ions.  Howeve r ,

further work is cur ren t ly under way, and it appears the re is amp le room

for  improvement  in the t reatment  of boundary conditions .

A second important result of this work is that , for the type of flows

considered to date, the parabolized vorticity equations provide  an adequate

model  of the flow , in that these solutions are in agreement  with solutions to

the full Navier-Stokes equations. This result  is important because it has

been possible to generate solutions to the parabolized vort ic i ty  equat ions in

as little as one-twentieth the time required to solve the same physical  p rob-

lem using the Navier-Stoke s equations .

The third result of this work is that the nonlinear effects  can be de-

stabilizing relative to the linear effects , That is , th e boundary laye r is

more unstable to la rge dis turbances  than to small ones . This is important

since previous nonlinear stability ana lyses apply only to para l le l flow and ,

in addi t ion , a re  series expansions about the c r it i ca l  point . The present

results are for a nonparalle l boundary layer and may be obtained for arbi-

trary Reynolds numbe r and upstream disturbance .

The final point is that the F o u r i e r - t r a n s f o r m e d  resul ts  presented  here in

represent  a beginning which should lead to a bette r unders tand ing  of the

mechanisms by which energy is nonl inear ly ex chanced between va ri ous wave

modes . The nonmonotonic behavior of the second mode is pa r t i cu la r ly

interes t ing ; the fact that the g rowth /decay  behavior  of this mode appears  to

be correlated with the relat ive phases of the f i r s t  and second mode is a l so  a

new result . Further numerical  and anal ytical  s tudies  wi l l  be required to

dete rmine the full s ignificance and general i ty  of these f ina l  resul t s .
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